24-11-2014 03:35:23
Ana Sayfa Bilim Matematik Fibonacci sayıları

Sevgili TurkceBilgi.Org kullanıcısı, sizinle daha kaliteli zaman geçirek adına üyemiz olmanızı rica ederiz.

Fibonacci sayıları
Fibonacci sayıları ve Altın oran Fibonacci Sayıları Fibonacci Serisi

Adı orta çağın en büyük matematikçileri arasında geçen Fibonacci'nin hayatı ile ilgili pek fazla bilgi bulunmamaktadır. İtalya'nın Pisa şehrinde 1170'li yıllarda doğduğu sanılmakta, babasının işi nedeniyle Kuzey Afrika'ya ve Cezayir'e gitttiği ve burada Arap hocalardan matematik dersleri aldığı bilinmektedir. Hint-Arap sayılarını (1, 2, 3...) öğrenerek, bunları Avrupa'ya tanıtmıştır. Bu bakımdan Fibonacci, matematiği Araplardan alıp Avrupa'ya tanıtan kişi olarak anılır. (3)

“Fibonacci sayıları” ve özellikle “Altın Oran”, matematikçilerin oldukça ilgisini çekmiş ve birçok araştırmaya konu olmuş bulgulardır. Bunun sebepleri; Fibonacci dizisindeki sayıların oranı olan 1,61803... sayısının -ki buna “Altın Oran” denilmektedir- tarihte oyun kartlarından piramitlerin yapımına kadar birçok alanda kullanılmış olması, sayı teorilerinde ortaya çıkması ve doğada birçok varlıkta gözlemlenmesidir. (2)

İlk olarak 1202'de yazdığı Liber Abaci “The Book of Calculation” kitabının yeni versiyonunu 1228'de tamamlayan Fibonacci'nin, Practica Geometria “The Practice of Geometry” (1220) , Flos “The flower” (1225) ve Liber Quadratorum “The Book of Square Numbers” (1225) kitapları ise matematik alanında ele almış olduğu diğer eserlerdir. Bu kitapların içinde en ünlü olanı, Fibonacci sayılarıyla Altın Oran'ın anlatıldığı “Liber Abaci”dir. Kitapta karşılaşılan bir problemin çözümünde Fibonacci dizisi anlatılmaktadır. Bu problem aşağıdaki gibidir: (4), (5)

Tavşan Problemi
“Dört yanı duvarlarla çevrili bir yere bir çift tavşan konmuştur. Her çift tavşanın bir ay içinde yeni bir çift tavşan yavruladığı, her yeni çiftin de erginleşmesi için bir ay gerektiği ve tavşanların ölmediği varsayılırsa, 100 ay sonunda dört duvarın arasında kaç çift tavşan olur?” Bu şekilde düşünüldüğü takdirde tavşan çiftleri aylara göre şu sıralamayı ortaya koymaktadır: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,... Görüldüğü gibi ilk iki sayı hariç, her sayı kendisinden önce gelen iki sayının toplamına eşittir. Tavşanlar, görülen grafik (bkz, resim 1) doğrultusunda artış göstermektedir. Bu sayıların arasındaki oran ise bize altın oranı vermektedir.

Fibonacci Dizisinin Görüldüğü ve Kullanıldığı Yerler
Fibonacci sayılarına özellikle doğada çok sık rastlamaktayız. Bu sayılar bitki yaprakları, bitki tohumları, çiçek yaprakları ve kozalaklarda sıkça karşımıza çıkmaktadır. Daha da ilginci bu sayılara Pascal veya Binom üçgeninde, Mimar Sinan'ın eserlerinde, Da Vinci'nin resimlerinde de rastlanmaktadır.

Da Vinci'nin yandaki (bkz: resim 2) yapıtında, Mona Lisa'nın başı etrafına bir dörtgen çizildiğinde, sağlanan dörtgen altın orana uymakta olup resmin boyutları da altın oranı vermektedir. (1) Fibonacci dizisindeki bir terim, ondan önce gelen bir terime bölündüğünde, bölümün sonsuza eşit olması için irrasyonal bir sayı olan altın oran sayısına yaklaştığı görülmektedir. (2)

Bitkiler alemine genel bir bakışla yaklaşıldığında ise, bitki sapları üzerindeki yaprakların dizilişinin Fibonacci dizisine uygun olduğu görülür. Bu yargı; kavak, elma, muz, armut, karaağaç gibi birçok bitki için geçerlidir.

Şekilde görüldüğü gibi (bkz: resim 3) sap üzerindeki yapraklar Fibonacci sayılarına uygun olarak, birbirlerini kapatmayacak şekilde sıralanır. Sap üzerindeki ilk yaprağı “1” numara olarak alırsak; “1” numara ile aynı yönde olan bir sonraki yaprağa ulaşmak için saat yönünde 3 defa dönmemiz gerekir. Bunun sonuncunda toplam 5 yaprak sayarız. Bu dönüşü saat yönünün tersinde yaparsak, 2 tur atmamız gerekecek ve bu da bize “2, 3, 5” ardışık Fibonacci dizisini verecektir.

Tütün bitkisi yapraklarının dizilişindeki Fibonacci dizisi ise, bitkinin güneşten ve havadaki karbondioksitten optimum düzeyde faydalanmasını sağlayarak, yüksek düzeyde fotosentez yapmasına olanak verir. Bu özellik eğrelti otunda da gözlemlenmektedir. Ayçiçeğinin üstündeki spiral şeklinde dizilmiş tohumları saat yönünde ve tersi yönde saydığımızda ardışık iki Fibonacci sayısına ulaşırız. Papatya çiçeğinde de aynı Fibonacci dizisi gözlenmektedir. Benzer bir durum çam kozalağı üzerindeki tanelerde de mevcuttur. Bu taneler kozalağın alt kısmındaki sabit bir noktadan başlayarak, tepe noktasındaki başka bir sabit noktaya doğru eğriler çizerek gelişirler ve bu gelişim sonunda taneleri soldan sağa ve sağdan sola doğru sayarsak başka bir Fibonacci dizisi elde ederiz. (6)

İnsan vücudunda da fibonacci dizisinin işaretlerini görebiliriz. Baştan göbek deliğine kadar olan uzunluğun boyumuza oranı, parmak uçlarından parmakların boğumuna kadar olan uzunluğun bütün parmak boyuna oranı bize fi sayısını verir.

Fibonacci dizisinin görüldüğü objeler yalnızca doğanın döngüsü içinde değil, insan yapılarında da mevcuttur. Kubbe ve kule tasarımları içeren ve genellikle eski çağlara ait mimari eserlerde de Fibonacci dizisi gözlemlenir. Mimar Sinan'ın yapmış olduğu Selimiye ve Süleymaniye camilerinin, kubbe ve minarelerinde altın oran gözlenmektedir. Matematikte ise başta geometri alanında kullanılan Pascal üçgenini göz önünde bulundurursak, üçgeni oluşturduktan sonra, katsayıların sıralı çapraz toplamları Fibonacci dizisini vermektedir. (1)

matematiğin en ilgi çekici konuları arasındadır.

Bir yarışmada aşağıdaki problem ortaya çıktı :

Her ay bir çift tavşan üreten tek bir tavşan çifti ile başlanırsa, üretilen her tavşan çifti de bir ay sonra aynı şekilde üretkenleşirse ve tavşanlar hiç ölmezse, n ay sonra toplam kaç tavşan çifti olur ?

Fibonacci sayıların yardımıyla yapılmış fayanslar

Fibonacci sayıların yardımıyla yapılmış fayanslar
İlk ay yeni doğmuş bir çift tavşanımız olsun, tabi matematik bu yavruların anasız, babasız nasıl büyütülecekleri veya bu iki tavşanın da aynı cinsten olup olmaması konusuna pek girmez. İkinci ayda, bu tavşanlar daha yavrulamadıklarından, hala bir çift tavşanımız olacak. Üçüncü ayda bu tavşanlarımız yavrulayacağından iki çift tavşanımız olacak. Bu yeni doğmuş olan çift dördüncü ay doğurmayacak , oysa ana babaları yeniden bir çift yavru yapacak ve toplam üç çift tavşanımız olacak. Bu mantıkla düşünmeye devam edersek aşağıdaki sayı dizisini elde ederiz. Dizideki sayılar Ocak (ilk yavru çiftinin ortaya çıktığı ay) ile Aralık arasındaki takvim aylarının her birinde bizim kahraman tavşan çiftlerimizin sayısını vermektedir:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, ...

Dizi elemanlarının matematiksel gösterimi n tam sayı olmak üzere aşağıdaki gibi verilir:

a_n = \begin{cases} n, & n<2 \\ a_{n-1}+a_{n-2}, & n\ge 2 \end{cases}

 

  • Baykut, V. ve Kıvanç, E.(2004). Elyadal.org.21 Ocak 2006, www.elyadal.org/pivolka/13/fibonacci.htm
  • Fibonacci Dizisi ve Altın Oran www.sci-stud.ankara.edu.tr/~fn012710/fibo.htm
 

Bu Konuya 1 Yorum Yapılmış

 
0 #1 fibonacciimerve 09-01-2014 19:20
Cok sagolunn cok uardimci oldu yaa
Alıntı
 

Bu Konuya Yorum Yapabilirsiniz






Bilim - Matematik kategorisinde bulunan Fibonacci sayıları başlıklı yazı fibonacci sayıları hakkında bilgi , fibonacci sayı dizisi , fibonacci sayıları , matematik fibonacci , fibonacci matematik , matematik fibonacci sayıları , dörtgensel sayılar , matematikte fibonacci , fibonacci dizisi , fibonacci dizisi hakkında bilgi , fibonacci sayıları hakkında araştırma , fibonacci sayı dizisi hakkında bilgi , fibonacci hakkında bilgi konuları hakkında bilgi içermektedir.